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A recent conference report described a decision rule, hereafter re-
ferred to as the 4-6-20 rule, for acceptance/rejection of analytical
runs in bioavailability, bioequivalence, and pharmacokinetic stud-
ies. This procedure requires that quality control specimens at three
concentrations (low, medium, and high) be assayed in duplicate in
each run. For run acceptance, at least four of the six assay values
must be within +20% of their respective nominal concentrations,
and at least one of the two values at each concentration must be
within these limits. An inherent flaw in this decision rule is that the
risk of rejecting runs, when the assay performance has in fact not
deteriorated, varies for each assay and is neither known nor con-
trolled. In this paper simulation methods are used to evaluate the
operating characteristics of the 4-6-20 rule in comparison to those of
classical statistical quality control procedures.

KEY WORDS: quality control; Shewhart control; multivariate con-
trol; operating characteristics; power.

INTRODUCTION

After an analytical method has been validated to show
that its performance characteristics are acceptable prior to
use in bioanalytical studies, the performance of the method
in routine applications is monitored with quality control
(QC) methods. A recent conference report (1) provided guid-
ing principles for both validation studies and quality control
methods. This paper is an evaluation of the QC procedures
recommended in the conference report. The conference rec-
ommendations for validation studies will be evaluated in a
forthcoming paper.

The conference report describes a decision rule, here-
after referred to as the 4-6-20 rule, for acceptance/rejection
of analytical runs in bioavailability, bioequivalence, and
pharmacokinetic studies (1). This procedure requires that
QC specimens at three concentrations (low, medium, and
high) be assayed in duplicate in each run. For run accep-
tance, at least four of the six assay values must be within
+20% of their respectively nominal concentrations, and at
least one of the two values at each concentration must be
within these limits. An inherent flaw in this decision rule is
that the risk of rejecting runs, when the assay performance
has in fact not deteriorated, varies for each assay and is
neither known nor controlled. Although the conference rec-
ommendations for validation studies include the use of var-
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ious statistical methods, the recommendations for QC are
completely void of statistical methods. In this paper classical
statistical QC procedures are presented as alternatives to the
4-6-20 procedure, and simulation methods are used to eval-
uate and compare the operating characteristics of the 4-6-20
rule and the statistical procedures.

METHODS

Shewhart Control Procedure

One of the oldest, simplest, and most commonly used
QC procedures for monitoring the stability of a process is the
Shewhart (2) procedure for the mean and standard deviation
(or alternatively, the range) of » measurements on a QC
specimen in each run. The control limits for the run mean,
allowing for both between-run and within-run variance com-
ponents, are
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where the population mean, p, and the variance compo-
nents, o and 0%, are assumed known but, in practice, are
estimated with prior data in what is called the baseline pe-
riod. On a run-by-run basis, the Shewhart procedure for the
run mean is a statistical hypothesis test that the mean of
the method has not changed. The false rejection rate, a,
is controlled by the value of the standard normal deviate
Zy _on. The commonly used standard Gaussian critical
value, z,__, = 3, yields a false rejection probability a« =
0.0027.

The upper control limit for the within-run standard de-
viation is
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On a run-by-run basis, the Shewhart procedure for the
within-run standard deviation is a statistical hypothesis test
that the within-run variation of the method has not in-
creased. The false rejection rate, «, is controlled by the
value of the chi-square deviate xf,’,,a withv = n — 1 de-
grees of freedom (df). For n = 2, the chi-square critical value
xf,l —o = 9.0 yields a false rejection probability a = 0.0027.

The baseline period for the Shewhart procedure should
consist of 30 or more runs and should be frequently updated
with the accrual of routine runs. If there are far fewer than 30
runs, then the Gaussian and chi-square critical values in (1)
and (2) should be replaced by the appropriate critical values
of the ¢ and F distributions to control the false rejection
probability.

If the Shewhart procedure is applied to each of the three
control specimens, then there are six statistics (three means
and three standard deviations) to monitor for each run. If a
run is rejected when one or more of the six statistics exceeds
its control limits, then the overall false rejection probabil-
ity is
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assuming that the six statistics are independent. An approx-
imation that holds for small o, is a; = Za,. The probability «,
gives the frequency of runs that will unnecessarily be re-
jected or repeated, and therefore it should be an acceptably
small value. If each ¢; is 0.0027, then ay is 0.0161. The three
within-run standard deviations are always independent from
each other and from the means, but the three means are not
mutually independent for assays with significant between-
run covariances for the three QC specimens. In such cases
Eq. (3) provides bounds for oy, using all six terms for the
upper bound and only four terms (for the three standard
deviations and one mean) for the lower bound.

Multivariate Control Procedure

For assays where independence is not satisfied, a mul-
tivariate analogue (3) of the Shewhart procedure provides
exact control of the overall false rejection rate and, in addi-
tion, greater statistical power to detect real changes in assay
performance. There are two QC statistics, one for monitor-
ing the run mean vector and one for monitoring the within-
run variability. The statistic for monitoring the vector X of p
= 3 control specimen means for a specific run is
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where the population mean vector, p, and the between-run
and within-run p-dimensional variance—covariance compo-
nents, 2, and Sy, are estimated from baseline data. The
upper control limit for Ty is X2, _, wWith v = p df, where p
is the number of control specimens. The false rejection rate
a is controlled by the value of the chi-square deviate x2 , _,.

The statistic for monitoring the within-run variability for
a specific run is
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The upper control limit for 7% is x2,_, With v = p(n — 1)
df. The false rejection rate a is controlled by the value of the
- chi-square deviate xZ | _,.

If a run is rejected when either T3, or T% exceeds its
control limit, then the overall false rejection probability is «,,
=1 - (1 — ay)(1 — ap), which is well approximated by «,
= ay t+ ap for small values. The baseline period for the
multivariate procedure should consist of at least 30 runs;
otherwise the chi-square critical values should be replaced
with appropriate critical values of the F distribution.

Simulation Model for Inherent Assay Bias and Variability

The operating characteristics (false rejection rates and
power probabilities) of the 4-6-20, Shewhart, and multivari-
ate procedures were evaluated by simulation. To evaluate
and compare the false rejection rates for the three proce-
dures, the following model was used to generate random
observations for the QC specimens:

X; =+ +oe; (6)
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where x;; is the assay result vector (3 X 1, representing the
three control samples) for the ith run and the jth replicate (j
= 1,2); pis the 3 X 1 vector of true means of assay results;
r; is the 3 x 1 vector of random run effects for the ith run,
assumed to be N(0,Z;); and e is the 3 X 1 vector of random
errors for the ith run and the jth replicate, assumed to be
N(0,Zy).

Further assumptions to simplify the simulation study
were as follows

(a) p = Bc where c is the vector of nominal concentra-

tions and 100(8 — 1) represents the percentage mul-
tiplicative inherent assay bias;

(b) ¢ = (100, 100, 100) without loss of generality;

(c) 2w and Z; are diagonal matrices; and

(d) the total standard deviation (square roots of diago-

nal elements of 2. = 5 + Zy) is a constant per-
centage of the mean (elements of p), i.e., the inker-
ent assay variability is a constant coefficient of vari-
ation (%CV = 1000/p.).

Five thousand runs were simulated according to the
model in Eq. (6), using the RANNOR function in SAS (4),
for each combination of total CV (1 to 15% in increments of
1%) and inherent bias (0, +5, + 10, and + 15%). These max-
imum values (15% for total CV and + 15% for bias) represent
the extremes for a valid assay, according to the recommen-
dations (1). The proportion of the total variance due to the
between-run and within-run components was set at 20 and
80%, respectively. For the Shewhart procedure, each of the
six a values was set to 0.0027, so the overall a, was 0.0161.
For the multivariate procedure, each of the two « values was
set to 0.0080 to make the overall o, the same as that for the
Shewhart procedure.

Simulation of Changes in Assay Bias or Variability

To investigate the power of the three QC procedures to
detect changes in assay bias, S000 runs were simulated with
the model

X; =Yyp +1 + ¢y ¥

where vy represents a constant multiplicative increase in the
assay results, for each of three total CVs (3, 8, and 15%) and
a series of values of y = 1.0. It was assumed that there was
no inherent bias (i.e., B = 1). Thus, changes in average
assay results were represented by changes in assay bias from
0 to 100(y — 1)%. The proportion of the total variance due
to the between-run and within-run components was 20 and
80%, respectively. The o, value for both the Shewhart and
the multivariate procedures was 0.0161.

To investigate the power of the three QC procedures to
detect changes in assay variability, 5000 runs were simulated
with the model

X; = p+ Mr; + € ®)

where A represents a constant multiplicative increase in the
assay standard deviation, for each of three inherent total
CVs (3, 8, and 15%) and a series of values of A = 1.0. It was
assumed that there was no inherent bias (i.e., 3 = 1). The
proportion of the total variance due to the between-run and
within-run components was 20 and 80%, respectively. The o,
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Fig. 1. False rejection rates (rates at which runs are rejected when

neither bias nor CV has changed) for the 4-6-20 rule, as a function of
inherent bias and inherent CV.

value for both the Shewhart and the multivariate procedures
was 0.0161.

RESULTS

False Rejection Rates

False rejection rates for the 4-6-20 procedure, as a func-
tion of the inherent total CV and the inherent bias, are shown
in Fig. 1. For small values of total CV and bias, the false
rejection rate is essentially zero. This indicates that essen-
tially no runs will be unnecessarily repeated or rejected.
However, there is a cost for this ‘‘undercontrol’’ in terms of
reduced power to detect real changes in assay performance,
as will be shown in the next two sections. As the CV or bias
increases, the false rejection rate increases. For bias <5%
and total CV <10%, the false rejection rate remains low, 2%
or less. However, for some assays with analytical perfor-
mance well within the validation acceptance criteria, say
10% CV and 10% bias, the false rejection rate is high, ap-
proximately 12%. Thus, 12% of routine runs will be unnec-
essarily rejected or repeated. For assays with performance at
the validation acceptance limits, 15% CV and 15% bias, the
false rejection rate is approximately 50%. In contrast to
these uncontrolled and sometimes high false rejection rates
with the 4-6-20 procedure, the false rejection rate for the
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Fig. 2. Power of three QC rules to detect actual changes in assay
bias from an inherent 0% bias. Inherent total CV = 3%.
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Fig. 3. Power of three QC rules to detect actual changes in assay
bias from an inherent 0% bias. Inherent total CV = 8%.

Shewhart and multivariate procedures is controlled at ay =
1.6% for all values of inherent total CV and inherent bias.

Power to Detect Changes in Assay Bias

Power probabilities, or rejection rates, for detecting ac-
tual changes in the assay bias are shown in Figs. 2—4. The
inherent assay bias is assumed to be zero, which is approx-
imately true for many assays. For an assay with a total CV of
3% (Fig. 2), the power of the 4-6-20 procedure is much lower
than that of the Shewhart procedure, which is slightly less
than that of the multivariate procedure. The 4-6-20 proce-
dure has negligible power (<1%) to detect changes in assay
bias as large as 15%, whereas the Shewhart and multivariate
procedures have excellent power (>99%) to detect changes
in assay bias of 109 or more. The 4-6-20 procedure has good
power (say, 80%) to detect a change in bias of 21%, whereas
the Shewhart and multivariate procedures have good power
to detect changes of 7 and 5%, respectively.

For an assay with a total CV of 8% (Fig. 3), the power
of the 4-6-20 procedure is less than that of the Shewhart
procedure, which is less than that of the multivariate proce-
dure. The bias changes that can be detected with good power
(say, 80%) are approximately 21, 19, and 14% for the 4-6-20,
Shewhart, and multivariate procedures, respectively.

For an assay with a total CV of 15% (Fig. 4), the power
of the 4-6-20 procedure is greater than that of the Shewhart
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Fig. 4. Power of three QC rules to detect actual changes in assay
bias from an inherent 0% bias. Inherent total CV = 15%.
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Fig. 5. Power of three QC rules to detect actual changes in assay CV
from an inherent 3% total CV. Inherent bias = 0%.

and multivariate procedures, but this advantage is the result
of the high false rejection rate of 14%.

Power to Detect Changes in Assay Variability

Power probabilities, or rejection rates, for detecting ac-
tual changes in the total CV are shown in Figs. 5-7. For an
assay with an inherent total CV of 3% (Fig. 5), the power of
the 4-6-20 procedure is much lower than that of the Shewhart
procedure, which is slightly less than that of the multivariate
procedure. If the total CV increases 5-fold (to 15%) the 4-6-
20 procedure has only 12% power to detect this change in
total CV, whereas the Shewhart and multivariate procedures
have good power (>80%) to detect 2.5-fold (to 7.5%) or
greater increases in total CV.

For an assay with an inherent total CV of 8% (Fig. 6),
the power of the 4-6-20 procedure is lower than that of the
Shewhart procedure, which is slightly less than that of the
multivariate procedure. If the total CV increases twofold (to
16%) the 4-6-20 procedure has only 18% power to detect this
change in total CV, whereas the Shewhart and multivariate
procedures have moderate power (60%) to detect this
change.

For an assay with an inherent total CV of 15% (Fig. 7),
the power curves of the three procedures are similar, but the

Mutti

Power (%)
ca3B888883888

8 12 16 20 24 28 32 36 40

Total CV (%)

Fig. 6. Power of three QC rules to detect actual changes in assay CV
from an inherent 8% total CV. Inherent bias = 0%.
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Fig. 7. Power of three QC rules to detect actual changes in assay CV
from an inherent 15% total CV. Inherent bias = 0%.

4-6-20 procedure has a high false rejection rate of 14%, com-
pared to the 1.6% rate of the two statistical procedures.

DISCUSSION

A basic flaw with the 4-6-20 procedure is that the fre-
quency of falsely rejected runs depends upon the inherent
bias and variability of the assay. For assays with moderate
(or greater) inherent bias and variability, the false rejection
rate is too high, thus requiring the unnecessary repetition/
rejection of runs. For assays with low bias and variability,
the false rejection rate is too low, thus compromising the
power to detect important deteriorations in assay perfor-
mance. To remedy these problems, the Shewhart or multi-
variate statistical QC procedure should be used, with a fixed
false rejection rate of acceptably small size.

These arguments are similar to those which led to the
dismissal of the 75/75 rule for bioequivalence assessment.
Haynes (5,6) and Metzler and Huang (7) showed by simula-
tion that the probability of incorrectly rejecting bioequiva-
lence of two formulations that are truly equal in average
bioavailability depends on the intersubject variability of the
formulations. Recently, Dobbins and Thiyagarajan (8) dem-
onstrated this link between the significance level (incorrect
rejection rate) and variability by placing the 75/75 rule in the
framework of a statistical hypothesis test.

It may be appropriate to establish criteria to allow ac-
ceptance of runs wherein a statistical QC rule has been vio-
lated, but the analytical performance change is considered
small relative to the scientific need. Factors to consider in-
clude the type and magnitude of the rule violation, the use of
the assay results, the study design, and the type of statistical
analyses to be performed. For example, the statistical error
term in a crossover study includes only assay and intra-
subject variability, whereas the error term in a parallel study
also includes intersubject biological variability. Thus, an an-
alytical performance change of a given type and magnitude
will generally be more serious for a crossover study than for
a parallel study.
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